skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Lee, Margaret S"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. In supramolecular materials, multiple weak binding groups can act as a single collective unit when confined to a localized volume, thereby producing strong but dynamic bonds between material building blocks. This principle of multivalency provides a versatile means of controlling material assembly, as both the number and the type of supramolecular moieties become design handles to modulate the strength of intermolecular interactions. However, in materials with building blocks significantly larger than individual supramolecular moieties (e.g., polymer or nanoparticle scaffolds), the degree of multivalency is difficult to predict or control, as sufficiently large scaffolds inherently preclude separated supramolecular moieties from interacting. Because molecular models commonly used to examine supramolecular interactions are intrinsically unable to examine any trends or emergent behaviors that arise due to nanoscale scaffold geometry, our understanding of the thermodynamics of these massively multivalent systems remains limited. Here we address this challenge via the coassembly of polymer-grafted nanoparticles and multivalent polymers, systematically examining how multivalent scaffold size, shape, and spacing affect their collective thermodynamics. Investigating the interplay of polymer structure and supramolecular group stoichiometry reveals complicated but rationally describable trends that demonstrate how the supramolecular scaffold design can modulate the strength of multivalent interactions. This approach to self-assembled supramolecular materials thus allows for the manipulation of polymer−nanoparticle composites with controlled thermal stability, nanoparticle organization, and tailored meso- to microscopic structures. The sophisticated control of multivalent thermodynamics through precise modulation of the nanoscale scaffold geometry represents a significant advance in the ability to rationally design complex hierarchically structured materials via self-assembly. 
    more » « less
  2. Abstract Polymer nanocomposites are made by combining a nanoscale filler with a polymer matrix, where polymer‐particle interactions can enhance matrix properties and introduce behaviors distinct from either component. Manipulating particle organization within a composite potentially allows for better control over polymer‐particle interactions, and the formation of ordered arrays can introduce new, emergent properties not observed in random composites. However, self‐assembly of ordered particle arrays typically requires weak interparticle interactions to prevent kinetic traps, making these assemblies incompatible with most conventional processing techniques. As a result, more fundamental investigations are needed into methods to provide additional stability to these lattices without disrupting their internal organization. The authors show that the addition of free polymer chains to the assembly solution is a simple means to increase the stability of nanoparticle superlattices against thermal dissociation. By adding high concentrations (>50 mg mL−1) of free polymer to nanoparticle superlattices, it is possible to significantly elevate their thermal stability without adversely affecting ordering. Moreover, polymer topology, molecular weight, and concentration can also be used as independent design handles to tune this behavior. Collectively, this work allows for a wider range of processing conditions for generating future nanocomposites with complete control over particle organization within the material. 
    more » « less